Computational Thinking Initiation. An experience with robots in Primary Education
Journal of Research in Science, Mathematics and Technology Education, Volume 1, Issue 2, May 2018, pp. 181-206
OPEN ACCESS VIEWS: 1572 DOWNLOADS: 653 Publication date: 15 May 2018
OPEN ACCESS VIEWS: 1572 DOWNLOADS: 653 Publication date: 15 May 2018
ABSTRACT
Computational Thinking (CT) is an increasingly interesting educational trend, since it is currently thought that the next generation will need to master this skill in order to succeed in modern life. At the same time, research indicates that motivation is a key element that affects the effectiveness of educational processes. Consequently, educators should take into account this fact when designing teaching sequences. In this paper, we present a robotics-based instruction for third-grade students aimed at introducing computational thinking ideas. The experience was carried out with 63 students. An assessment of different indicators concerning learning outcomes, such as mental rotation or computation thinking gains, was performed. In particular, from a motivational perspective, a test developed by Keller (1983; 1987; 2010) was employed in order to assess four dimensions: attention, relevance, confidence and satisfaction. Results show the participants’ high motivation after working with robot computational ideas. These results may eventually support the use of educational robotics in order to promote students’ development of computational thinking in primary schools.
KEYWORDS
Computational Thinking, Educational Robotics, Motivation, Primary Education, Instructional learning.
CITATION (APA)
Merino-Armero, J. M., González-Calero, J. A., Cózar-Gutiérrez, R., & Villena-Taranilla, R. (2018). Computational Thinking Initiation. An experience with robots in Primary Education. Journal of Research in Science, Mathematics and Technology Education, 1(2), 181-206. https://doi.org/10.31756/jrsmte.124
REFERENCES
- Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational Thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47–57. https://doi.org/10.2307/jeductechsoci.19.3.47
- Balanskat, A., & Engelhardt, K. (2015). Computing our future.Computer programming and coding. Priorities, school curricula and initiatives across Europe. Brussels: European Schoolnet.
- Balladares, J. A., Avilés, M. R., & Pérez, H. O. (2016). Del pensamiento complejo al pensamiento computacional: retos para la educación contemporánea. Sophía, 2(21), 143. https://doi.org/10.17163/soph.n21.2016.06
- Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229–243. https://doi.org/10.1080/15391523.2007.10782481
- Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12. ACM Inroads, 2(1), 48. https://doi.org/10.1145/1929887.1929905
- Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers and Education, 58(3), 978–988. https://doi.org/10.1016/j.compedu.2011.10.006
- Beran, T. N., Ramirez-Serrano, A., Kuzyk, R., Fior, M., & Nugent, S. (2011). Understanding how children understand robots: Perceived animism in childrobot interaction. International Journal of Human Computer Studies, 69(7–8), 539–550. https://doi.org/10.1016/j.ijhcs.2011.04.003
- Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016). Developing Computational Thinking : Approaches and Orientations in K-12 Education. Proceedings EdMedia 2016, (June), 1–7. https://doi.org/10.2791/792158
- Bolliger, D. U., Supanakorn, S., & Boggs, C. (2010). Impact of podcasting on student motivation in the online learning environment. Computers and Education, 55(2), 714–722. https://doi.org/10.1016/j.compedu.2010.03.004
- Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 1–25. https://doi.org/10.1.1.296.6602
- Cabero, J., Fernandez, B., & Marín, V. (2017). Dispositivos móviles y realidad aumentada en el aprendizaje del alumnado universitario process of university students. Revista Iberoamericana de Educación a Distancia, 20(2), 167–185. https://doi.org/10.5944/ried.20.2.17245
- Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers and Education, 55(4), 1572–1578. https://doi.org/10.1016/j.compedu.2010.06.023
- Cheng, Y. C., & Yeh, H. Te. (2009). From concepts of motivation to its application in instructional design: Reconsidering motivation from an instructional design perspective. British Journal of Educational Technology, 40(4), 597–605. https://doi.org/10.1111/j.1467-8535.2008.00857.x
- Chin, K.-Y., Hong, Z.-W., & Chen, Y.-L. (2014). Impact of Using an Educational Robot-Based Learning System on Students’ Motivation in Elementary Education. IEEE Transactions on Learning Technologies, 7(4), 333–345. https://doi.org/10.1109/TLT.2014.2346756
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York, New York, USA: Academic Press.
- Cooper, J. (2006). The digital divide: The special case of gender. Journal of Computer Assisted Learning, 22(5), 320–334. https://doi.org/10.1111/j.1365-2729.2006.00185.x
- Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics environment. Computers in Human Behavior, 17(5–6), 465–480. https://doi.org/10.1016/S0747-5632(01)00018-8
- Díaz, J., Queiruga, C., Tzancoff, C. B., Fava, L., & Harari, V. (2015). Robótica Educativa y Videojuegos en el Aula de la Escuela. In 2015 10th Iberian Conference on Information Systems and Technologies, CISTI 2015 (pp. 1298–1303). La Plata. https://doi.org/10.1109/CISTI.2015.7170616
- Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692–699. https://doi.org/10.1016/j.robot.2015.05.013
- Freeman, A., Becker, S., Cummins, M., Davis, A., & Hall Giesinger, C. (2017). NMC/CoSN Horizon Report: 2017 K-12 Edition. Austin, Texas.
- Gage, N. L. (Nathaniel L., & Berliner, D. C. (1998). Educational psychology. Houghton Mifflin.
- Gaudiello, I., & Zibetti, E. (2016). Learning Robotics, with Robotics, by Robotics: Educational Robotics. Learning Robotics, with Robotics, by Robotics: Educational Robotics (Vol. 3). https://doi.org/10.1002/9781119335740
- Glass, R. (2006). Call in Problem Solving, Not Computational Thinking. Communications of the ACM, 49(9), 13.
- Guzdial, M. (2008). EducationPaving the way for computational thinking. Communications of the ACM, 51(8), 25. https://doi.org/10.1145/1378704.1378713
- Hemmendinger, D. (2010). A plea for modesty. ACM Inroads, 1(2), 4. https://doi.org/10.1145/1805724.1805725
- Henderson, P. B. (2009). Ubiquitous computational thinking. Computer, 42(10), 100–102. https://doi.org/10.1109/MC.2009.334
- Highfield, K. (2010). Robotic toys as a catalyst for mathematical problem solving. Australian Primary Mathematics Classroom, 15(2), 22–28.
- Huang, W., Huang, W., Diefes-Dux, H., & Imbrie, P. K. (2006). A preliminary validation of Attention, Relevance Confidence and Satisfaction model-based Instructional Material Motivational Survey in a computer-based tutorial setting. British Journal of Educational Technology, 37(2), 243–259. https://doi.org/10.1111/j.1467-8535.2005.00582.x
- Huett, J. B., Moller, L., Young, J., Bray, M., & Huett, K. C. (2008). The effect of ARCS-based strategies on confidence and performance. The Quarterly Review of Distance Education, 9(2), 113–126. https://doi.org/Article
- INTEF. (2018). Programación, robótica y pensamiento computacional en el aula. Situación en España, enero 2018. Madrid.
- Karim, M. E., Lemaignan, S., & Mondada, F. (2016). A review: Can robots reshape K-12 STEM education? In Proceedings of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO (Vol. 2016–March, pp. 1–8). https://doi.org/10.1109/ARSO.2015.7428217
- Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of Instructional Development, 10(3), 2–10. https://doi.org/10.1007/BF02905780
- Keller, J. M. (2008). First principles of motivation to learn and e3-learning. Distance Education, 29(2), 175–185. https://doi.org/10.1080/01587910802154970
- Keller, J. M. (2010). Motivational design for learning and performance: The ARCS model approach. Motivational Design for Learning and Performance: The ARCS Model Approach. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4419-1250-3
- Lenhard, W., & Lenhard, A. (2016). Calculation of Effect Sizes. https://doi.org/10.13140/RG.2.1.3478.4245
- Li, K., & Keller, J. M. (2018). Use of the ARCS model in education: A literature review. Computers & Education, 122, 54–62. https://doi.org/10.1016/J.COMPEDU.2018.03.019
- Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems? Computers and Education, 49(4), 1097–1111. https://doi.org/10.1016/j.compedu.2005.12.008
- Llorens, F., García-Peñalvo, F. J., Molero, X., & Vendrell, E. (2017). La enseñanza de la informática, la programación y el pensamiento computacional en los estudios preuniversitarios [The Teaching of Computer Science, Programming and Computational Thinking in Pre-University Studies]. Education in The Knowledge Society, 18(2), 7–17. https://doi.org/10.14201/eks2017182717
- Loorbach, N., Peters, O., Karreman, J., & Steehouder, M. (2015). Validation of the Instructional Materials Motivation Survey (IMMS) in a self-directed instructional setting aimed at working with technology. British Journal of Educational Technology, 46(1), 204–218. https://doi.org/10.1111/bjet.12138
- Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
- Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate. British Journal of Educational Technology, 48(1), 191–201. https://doi.org/10.1111/bjet.12355
- Manovich, L. (2013). Software takes command : extending the language of new media. International texts in critical media aesthetics. New York, New York, USA: Bloomsbury Publishing.
- Martínez-Cantos, J. L. (2017). Digital skills gaps: A pending subject for gender digital inclusion in the European Union. European Journal of Communication, 32(5), 419–438. https://doi.org/10.1177/0267323117718464
- Micheuz, P. (2008). Some findings on informatics education in Austrian academic secondary schools. Informatics in Education, 7(2), 221–236.
- Moller, L., & Russell, J. D. (2008). An Application of the ARCS Model Design Process and Confidence-Building Strategies. Performance Improvement Quarterly, 7(4), 54–69. https://doi.org/10.1111/j.1937-8327.1994.tb00650.x
- Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Análisis Automático de Proyectos Scratch para Evaluar y Fomentar el Pensamiento Computacional. Revista de Educación a Distancia (RED), 46(10). https://doi.org/10.6018/red/46/10
- Mubin, O., Stevens, C. J., Shahid, S., Mahmud, A. Al, & Dong, J.-J. (2013). A Review of the applicability of Robots in Education. Technology for Education and Learning, 1(1), 1–7. https://doi.org/10.2316/Journal.209.2013.1.209-0015
- Nath, S., & Som, S. (2017). Security and Privacy Challenges: Internet of Things. Indian Journal of Science and Technology, 10(3). https://doi.org/10.17485/ijst/2017/v10i3/110642
- Papert, S. (1983). Mindstorms: Children, computers and powerful ideas. New Ideas in Psychology (Vol. 1). Basic Books. https://doi.org/10.1016/0732-118X(83)90034-X
- Peter, M., Glück, J., & Beiglböck, W. (2010). Map understanding as a developmental marker in childhood. Journal of Individual Differences, 31(2), 64–67. https://doi.org/10.1027/1614-0001/a000011
- Poulos, A. M., Ponnusamy, R., Dong, H.-W., & Fanselow, M. S. (2010). Compensation in the neural circuitry of fear conditioning awakens learning circuits in the bed nuclei of the stria terminalis. Proceedings of the National Academy of Sciences, 107(33), 14881–14886. https://doi.org/10.1073/pnas.1005754107
- Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., … Silver, J. (2009). Scratch. Communications of the ACM, 52(11), 60. https://doi.org/10.1145/1592761.1592779
- Rodgers, D. L., & Withrow-Thorton, B. J. (2005). the Effect of Instructional Media on Learner Motivation. International Journal of Instructional Media, 32(4), 333–343.
- Román-González, M. (2016, May 5). Códigoalfabetización y Pensamiento Computacional en Educación Primaria y Secundaria: Validación de un instrumento y evaluación de programas. Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Educación.
- Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
- Ruiz-del-Solar, J., & Avilés, R. (2004). Robotics courses for children as a motivation tool: The Chilean experience. IEEE Transactions on Education, 47(4), 474–480. https://doi.org/10.1109/TE.2004.825063
- Sáez-López, J. M., & Cózar-Gutiérrez, R. (2016). Pensamiento computacional y programación visual por bloques en el aula de Primaria. Educar, 53(1), 129. https://doi.org/10.5565/rev/educar.841
- Sáez-López, J. M., & Cózar-Gutiérrez, R. (2017). Programación visual por bloques en Educación Primaria: Aprendiendo y creando contenidos en Ciencias Sociales. Revista Complutense de Educación, 28(2), 409–426. https://doi.org/10.5209/rev_RCED.2017.v28.n2.49381
- Sáez-López, J. M., González, M. R., & Cano, E. V. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “scratch” in five schools. Computers & Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003
- Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review. Elsevier. https://doi.org/10.1016/j.edurev.2017.09.003
- Swaid, S. I. (2015). Bringing Computational Thinking to STEM Education. Procedia Manufacturing, 3, 3657–3662. https://doi.org/10.1016/j.promfg.2015.07.761
- The Royal Society. (2012). Shut down or restart? The way forward for computing in UK schools. Technology, (January), 1–122. https://doi.org/10.1088/2058-7058/25/07/21
- Toh, L. P. E., Causo, A., Tzuo, P.-W., Chen, I.-M., & Yeo, S. H. (2016). A Review on the Use of Robots in Education and Young Children. Educational Technology & Society, 19(2), 148–163. https://doi.org/10.2307/jeductechsoci.19.2.148
- Valverde-Berrocoso, J., Fernández-Sánchez, M. R., & Garrido-Arroyo, M. C. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Revista de Educación a Distancia (RED), 9(46). https://doi.org/10.6018/red/46/3
- Van-Diepen, N., Perrenet, J., & Zwaneveld, B. (2011). Which way with informatics in high schools in the netherlands? The dutch dilemma. Informatics in Education, 10(1), 123–148.
- Varney, M. W., Janoudi, A., Aslam, D. M., & Graham, D. (2012). Building young engineers: TASEM for third graders in woodcreek magnet elementary school. IEEE Transactions on Education, 55(1), 78–82. https://doi.org/10.1109/TE.2011.2131143
- Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
- Wenhao-Huang, D., Diefes-Dux, H., Imbrie, P. K., Daku, B., & Kallimani, J. G. (2004). Learning motivation evaluation for a computer-based instructional tutorial using ARCS model of motivational design. In 34th Annual Frontiers in Education, 2004. FIE 2004. (pp. 65–71). IEEE. https://doi.org/10.1109/FIE.2004.1408466
- Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33. https://doi.org/10.1145/1118178.1118215
- Wing, J. M. (2008). Computational thinking and thinking about computing. In IPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium, Program and CD-ROM (pp. 3717–3725). https://doi.org/10.1109/IPDPS.2008.4536091
- Wing, J. M. (2010). Computational Thinking: What and Why? Thelink - The Magaizne of the Varnegie Mellon University School of Computer Science, (March 2006), 1–6. Retrieved from https://bit.ly/2jUgWs1
- Wong, M., Castro-Alonso, J. C., Ayres, P., & Paas, F. (2015). Gender effects when learning manipulative tasks from instructional animations and static presentations. Educational Technology and Society, 18(4), 37–52. https://doi.org/10.1051/bioconf/20110100097
- Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Revista de Educación a Distancia (RED), 46(46). https://doi.org/10.6018/red/46/4
LICENSE
This work is licensed under a Creative Commons Attribution 4.0 International License.