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Allowing for New Possibilities 

Students develop their sense of what it 

means to "do mathematics" from their actual 

experiences with mathematics, and their 

primary opportunities to experience 

mathematics as a discipline are seated in the 

classroom activities in which they engage. 

(Henningsen & Stein, 1997, p. 525) 

Allowing for new possibilities in mathematics 

teaching can be challenging. Teachers carry their 

students’ learning encounters for life. Britzman (2003) 

points out that teachers are shaped based on the school 

experiences they had as learners. The teaching 

practices, beliefs, and attitudes that were part of a 

learner’s school experiences are intrinsically part of 

the teacher that same learner might become. Detaching 

from or deconstructing these previous experiences can 

be a long and hard process. Even though teachers 

might try to contextualize mathematics, use different 

strategies and engage students in their classes, 

mathematics teaching can still be focused on 

traditional instructional strategies, and founded on 

procedural knowledge. Silver et al. (2009) affirm that 

mathematics instruction is mainly based on low-level 

activities that do not help in promoting mathematical 

understanding. Strategies that promote mathematical 

thinking and reasoning can demand time, and 

outcomes are not immediate. If teachers do not allow 

for changes to happen, they may stick to familiar 

practices that might not do much more than having 

students reproducing steps based on the teacher's 

guidance. Teachers' commitment to a tight curriculum 

and time limitations are also complicating factors. 

Teachers may keep teaching in procedural ways that 

are perceived to be less time-consuming and more 
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successful in terms of covering the curriculum. That 

may be the reason why mathematics is understood by 

many as a matter of memorizing procedures. Because 

of allegedly time and curriculum constraints, the 

essence of mathematics might not be worked out in 

class and students might not understand why they are 

learning mathematics or why they benefit from 

studying mathematics. Procedural ways of teaching 

are unsuccessful in terms of promoting thoughtful 

inquiry and reasoning abilities, which are fundamental 

features of the mathematics essence. Although 

mathematics education is a result of different scenarios 

and demands around the world, teachers need to be 

cautious not to narrow down students’ learning 

processes and miss the opportunity to work on what 

matters. 

 

It can be hard to figure out new possibilities that focus 

on mathematical understanding and challenge 

traditional entrenched ways of teaching and learning. 

This article portrays a doctoral research that analyzes 

one of these possibilities (Corrêa, 2019; Dias Corrêa, 

2017). It explores a classroom complex environment, 

in which students’ development of mathematical 

proficiency is investigated when students engage in 

mathematical modelling tasks. The investigated 

classroom is intentionally acknowledged as a complex 

environment: it is centred on students’ work, allows 

for students’ interactions, enables non-linear and 

adaptive knowledge building, and supports a learning 

process in which individual and group explorations are 

merged in insightful ways. Modelling tasks are chosen 

because they can potentially engage students and 

trigger their interest in mathematics, given that these 

approaches are usually related to likely-to-happen 

contextualized scenarios. Lamon (2003) states that 

“children are intensely motivated when they are 

immersed in the problem” (p. 447). Besides, 

mathematical modelling tasks have the features of 

high-level tasks (Silver et al. 2009), that is, cognitively 

demanding tasks that promote students' mathematical 

thinking and understanding. Within this scenario, 

students’ mathematical proficiency is examined based 

on Kilpatrick, Swafford and Findell’s proficiency 

model (2001). The research questions are: How is 

mathematical proficiency observed and expressed in 

the actions and interactions of students when engaged 

in mathematical modelling approaches? What are the 

affordances on students' mathematical proficiency 

through modelling approaches? 

 

Mathematical Modelling at the School Level 

To acknowledge the novelty of the present research, it 

is necessary to look at the work that has been done in 

terms of mathematical modelling at the school level. 

This research literature review encompasses research 

around the world up to 2016. Meyer et al.(2011), 

Almeida et al.(2013), Blum and Borromeo Ferri 

(2016), are a few examples of work that helps in 

opening up possibilities for modelling instruction at 

the elementary and the secondary school level by 

presenting teachers with practical examples. Bleiler-

Baxter et al. (2016), Gann et al. (2016) and Cavey and 

Champion’s (2016) work discuss different ways of 

scaffolding students involved in modelling tasks at the 

secondary level. These studies are helpful in what 

concerns teachers' adjustment to the use of modelling 

approaches in class. In Australia, Brown and Edwards' 

(2011) research claims that students' use of prior 

knowledge, integration between reality and 

mathematics, and high-order thinking are related to the 

promotion of deep understanding through 

mathematical modelling. Bahmaei (2011), Ikeda and 

Stephens (2010), Kawasaki et al.  (2012) and Bonotto 
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(2010) are examples of research in Iran, Japan and 

Italy that discuss modelling experiences, relevance, 

and implementation issues.  

 

In a different perspective, Frejd (2012) investigates 

how teachers' conceptions in a Swedish school impact 

the use of modelling approaches in high-school 

classes. Frejd affirms that teachers, in general, do not 

consider modelling as a priority and they question 

some modelling approaches as related to mathematics. 

Blum and Borromeo Ferri (2009) assert that "the gap 

between the goals of the educational debate and 

everyday school practice is that modelling is difficult 

both for students and for teachers" (p. 45). In recent 

work, Blum and Borromeo Ferri (2016) suggest that 

modelling should have a main role in pre- and in-

service teacher education. In tune with that, Siller and 

Kuntze (2011) emphasize the need for introducing 

modelling in teacher professional developments. 

Doerr and English (Doerr, 2006; English & Doerr, 

2004) suggest that teachers build on their own 

knowledge through interacting with students during 

modelling processes and develop a diversity of 

approaches in response to students' modelling work. 

 

Although research on school mathematics and 

mathematical modelling can be found, to this literature 

review extent, no research investigates mathematical 

proficiency in the context of mathematical modelling. 

Lesh et al. (2013) assert that "most of [the] studies 

investigate the development of ideas – not the success 

of treatments and interventions" (p. 280). In this sense, 

apart from drawing attention to an example of a 

modelling task, this research presents an intervention 

to implement modelling tasks in class and a possible 

way of unpacking students’ mathematics work on 

these tasks. From students’ work analysis, the research 

dives into the accomplishment of the intervention by 

investigating how mathematical proficiency is 

promoted by mathematical modelling. Zbiek and 

Conner’s (2006) work is closer to the current research 

perspective, given that their work analyzes the 

mathematical learning that occurs while mathematical 

modelling tasks are implemented with prospective 

secondary mathematics teachers. The primary 

differences between the current study and Zbiek and 

Conner’s study are the research participants and the 

data analysis. In their case, participants are 

mathematics teachers and the analysis is based on 

modelling sub-processes, while in the current study, 

participants are high-school students and the analysis 

is based on mathematical proficiency. Considering 

that mathematical proficiency is a desired outcome of 

school mathematics education, it is relevant to 

investigate ways that mathematical modelling can 

nurture that proficiency. 

Research Methods 

Setting Up the Classroom 

An important part of this research study was the 

environment in which students engaged in modelling 

tasks. Classrooms have the potential to be complex 

systems. Nevertheless, the school system imposes a 

structure and some conditions on classrooms that end 

up inhibiting the complex nature of classrooms. In the 

case of mathematics classrooms, Ricks (2009) asserts 

that students’ difficulties in mathematics learning are 

precisely because of the lack of acknowledgment of 

mathematics classes as complex systems. In view of 

this, this research recognizes that the complex nature 

of a mathematics classroom must be respected, so that 

classroom intrinsic conditions are not suppressed. 

Hence, complexity science is used as a theoretical 

framework for this research classroom design; that is, 
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as a framework to set up the classroom environment in 

which the modelling intervention is held. In the 

proposed classroom design, students are encouraged to 

collectively investigate the given tasks and to explore 

the mathematics behind them. This research analysis 

investigates the individual outcomes derived from the 

collective work among students, given that individuals 

are nested in a collective learning system. The goal is 

to set up the classroom as a non-linear, spontaneous 

and self-organizing environment, and ultimately 

reduce mathematics learning issues commonly 

witnessed in the more instrumental and teacher-

centred classes.  

 

According to Davis and Simmt (2003), five conditions 

– namely internal diversity, redundancy, decentralized 

control, organized randomness, and neighbour 

interaction – are necessary to create, promote, and 

sustain a complex environment within mathematics 

classes. Internal diversity refers to the necessity of 

having students from different perspectives and with 

different backgrounds to generate possibilities for 

diverse contributions to the class. Redundancy is when 

students have common knowledge, experiences and 

expectations so that interactions among students are 

more likely to happen. Decentralized control speaks to 

the necessity of having the teacher stepping aside at 

various points and for varying lengths of time to leave 

students free to lead activities, thinking processes and 

the development of mathematical knowledge in class. 

Organized randomness allows students to manage 

their own work. It grants students the opportunity to 

organize their thoughts and reasoning in ways that 

make more sense to them, supporting their processes 

of understanding. Finally, neighbour interactions is 

related to the essential notion of having students 

interacting with each other, the teacher, the 

mathematics, and other useful thoughts or resources. 

These interactions allow students to share insights and 

ideas that might help in building on their mathematical 

understanding. This research endorses that these five 

conditions can facilitate the emergence of 

mathematical proficiency and the production of 

mathematical knowledge. Ricks (2009) defends that, 

except for redundancy, all the other conditions are not 

present in conservative mathematics instruction. This 

would explain why students struggle when studying 

mathematics: because they are immersed in a complex 

system, in which not all necessary conditions to 

support it are present.  

 

In addition to that, Henningsen and Stein (1997) 

suggest that different factors support engagement in 

cognitively high-level mathematical thinking. The 

authors highlight that these factors are not necessarily 

related to the mathematical task itself, but they can be 

related to the environment in which the task is being 

implemented. The task might not be enough to engage 

students in mathematical thinking. A proper 

supportive environment is necessary. Consistent with 

this finding, Henningsen and Stein assume that 

students' failures in school are not due to the lack of 

students' capability, but to the lack of opportunities to 

engage in adequate learning experiences instead. In 

this sense, a complexity setting seems to be an 

appropriate option for generating this supportive 

atmosphere, as it respects and preserves the 

authenticity of a mathematics classroom learning 

system. The proposed framework for the design of this 

research classroom setting consists of carrying out 

mathematical modelling tasks in an environment that 

sustains Davis and Simmt’s (2003) five complex 

conditions. The pentagon in Figure 1 represents this 

environment. 
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Outlining the Participants 

An in-service teacher and university graduate student 

were invited and accepted to host the research in their 

classroom. Among the different classes the teacher 

was teaching, the one selected was the one that 

accommodated the researcher’s schedule. The 

researched group was composed of a high-school class 

enrolled in a 4-month grade 11 Alberta (Canada) 

mathematics course (Mathematics 20-1). The course 

started in February and ended in early June. The group 

was an International Baccalaureate (IB) class 

composed of 27 students. Although all of them 

participated in the modelling tasks, data analysis was 

based on the work of 12 students who fully consented 

data collection and fully participated in the tasks. The 

research was based on four tasks presented in different 

moments. All 27 students were divided into groups to 

work on each of the tasks. The 12 participants, who 

allowed video recordings, were tentatively 

concentrated into three groups. For task number one, 

the classroom teacher was more directive when 

forming the groups. For the other three tasks, students 

were free to organize themselves into groups, as long 

as they (preferably) changed previous group 

configurations.  

 

Designing the Intervention  

This research presents a dual purpose: the design of a 

complex learning environment, and the development 

of a theory that claims that mathematical modelling is 

of benefit to the development of students' 

mathematical proficiency. The research considers the 

implementation, analysis and improvement of a 

planned intervention. It produces a supportive theory 

that aids teachers and educational designers in 

understanding how and why mathematical modelling 

approaches should be employed in mathematics 

classes. It is implemented in an ordinary mathematical 

class that presents common learning issues and 

challenges. Finally, the research addresses important 

outcomes to the mathematics teaching community. 

Based on these characteristics, according to the 

Design-Based Research Collective (2003), the present 

research can be categorized as design-based research. 

Indeed, Zawojewski (2013) points out that the nature 

of mathematical modelling research is related to 

design-based research; because when investigating 

modelling processes, the researcher is aware of the 

potential changes in students’ modelling processes, 

given that this is part of the nature of modelling.  

 

Biembengut and Hein (2002) (cited in Zorzan 2007) 

claim that the implementation of mathematical 

modelling in class is based on five different stages: 1) 

diagnosis of students' interest; 2) selection of the 

mathematical model or theme; 3) development of the 

content to be studied; 4) students' orientation towards 

the modelling process; and 5) assessment of the whole 

process. The present research intervention (Figure 1) 

was based on these implementation stages. A poll was 

done with students so that they could contribute to the 

choice of themes for the modelling tasks (Stage 1). The 

four most preferred themes were selected, and the 

researcher formulated four tasks, one for each theme, 

to be used in four different interventions (Stage 2). 

Next, the content to be studied should be developed 

(Stage 3) and students should move towards the 

modelling process (Stage 4). In this research, students 

were supposed to work on the content to be studied 

(Stage 3) and undergo the modelling process (Stage 4) 

simultaneously. This means students were not taught 

part of the necessary content knowledge to model the 

task beforehand. Students were invited to investigate 

the modelling task, work on it, maybe struggle due to 
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the lack of necessary mathematical content 

knowledge, and then come up with the new 

mathematical content knowledge or learn from the 

teacher during the modelling process. The teacher and 

the researcher were available to scaffold these 

processes. Having students learning or producing the 

necessary knowledge during modelling tasks was one 

of the differences of this research in relation to other 

previous studies. Contrast this approach with Bracke 

and Geiger's (2011) research, in which they inquire 

about the viability of the use of modelling tasks 

regularly during a whole grade 9 mathematics course. 

The authors report that "students were directed to use 

methods which have been discussed in the lessons 

before the start of the respective task" (p. 532). This is 

not an uncommon practice, in particular, when there is 

a concern about fulfilling curriculum demands. In 

open modelling activities, students are at risk of not 

using the desired curriculum mathematical content, 

and teachers might be more worried about covering 

specific content than about doing modelling activities. 

 

Figure 1  

Research Intervention 

 

 

During and after tasks were completed, the 

intervention was assessed so that the next intervention 

could be improved if needed. Although the core 

structure of the intervention remained the same, the 

proposed tasks and the approaches the teacher used 

during the implementation of each task were the 

results of these reflective assessments. This 

assessment refers to Stage 5 of Biembengut and Hein's 

(2002) (cited in Zorzan 2007) implementation stages. 

The intervention was repeated for each of the four 

tasks. The first intervention was completed at the end 

of February, the second at mid-March, the third at the 

end of April, and the fourth at the beginning of June. 
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Creating the Modelling Tasks 

Before diving into the creation of the research 

modelling tasks, it is important to elucidate what 

constitutes mathematical modelling according to this 

study. Cirillo  et al.  (2016) explain that an agreed-

upon definition for mathematical modelling cannot be 

found; instead, there are descriptions, definitions or 

assumptions made by single authors. Dym (2004) 

defines a mathematical model as "a representation in 

mathematical terms of the behaviour of real devices 

and objects" (p. 4). Blum and Borromeo Ferri (2009) 

define mathematical modelling as “the process of 

translating between the real world and mathematics in 

both directions” (p. 45). For this research study, 

mathematical modelling encompasses developing a 

mathematical model, that is, students create a 

mathematical representation that translates the 

situation they are analyzing into mathematics. The 

care in distinguishing between using a model and 

developing a model was grounded in the literature. 

Cavey and Champion (2016) assert that "most 

textbook 'modelling' problems engage students in 

using a given model, not in developing their own 

model or thinking about how to make improvements" 

(p. 132, italics added). Stillman (2001) states that 

teachers are encouraged to assess students’ abilities in 

using models, rather than their abilities in developing 

models. Similarly, Zbiek and Conner (2006) assert that 

“many modelling tasks in our schooling context are 

fundamentally applied problems in disguise and are 

presented to use existing mathematical knowledge 

rather than to evoke new mathematical knowledge” (p. 

100).  

Cirillo et al. (2016) describe mathematical modelling 

based on the following five features:  

a) the connection with ordinary situations; b) 

the ill-defined nature; c) the necessity of a 

creative modeler who is able to make 

assumptions, choices and decisions; d) the 

recursive behaviour given that the modeler 

needs to constantly confront the model and 

the phenomena to validate the model; and e) 

the non-unique or non-strict nature since the 

modeler can choose from multiple paths and 

get to different solutions (p. 144). 

 

In addition to these features, Bassanezi (1994) brings 

up an important aspect of mathematical modelling. He 

asserts that working with mathematical models in the 

teaching and learning processes is not only about 

expanding students’ knowledge, it is overall a matter 

of structuring the way students think and act. 

Therefore, mathematical modelling endorses students 

as agents of change (Viecili, 2006). 

 

With this perspective of mathematical modelling in 

mind, the next step is to understand how the research 

modelling tasks were created. Blum and Borromeo 

Ferri (2016) present six criteria that are essential for 

the creation of modelling tasks. The criteria are: 1) 

focus on the necessity of creating a task that truly 

addresses genuine situation contexts; 2) create an open 

task, in which a single correct answer is not the only 

possible solution for the task; 3) make the task 

complex enough, so that the task is not 

straightforwardly solved without thought-provoking 

students; 4) create a challenging task so that it is 

problematic enough to trigger students' high-level 

thinking; 5) create a cognitively accessible task that 

invites students to work within their zone of proximal 

development (Vygotsky 1978); and 6) ensure the task 

considers all modelling cycle stages (constructing, 

simplifying/structuring, mathematizing, working 

mathematically, interpreting, validating, presenting) 
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in order to have students working on all modelling 

competencies. The tasks created for this study 

followed these six criteria.  

 

Nonetheless, there was an extra criterion to follow in 

the task creations; the tasks were to promote the study 

of a not-already-taught mathematical concept or 

procedure, which was anticipated to be used in the 

process of solving the task. This additional criterion 

emphasizes modelling as a “vehicle” and not as a 

“content”. Galbraith (2011) explains that when 

modelling is approached as a “vehicle” the focus is on 

using modelling to learn or to enhance the learning of 

mathematical concepts and contents; while when 

modelling is approached as a “content” the focus is on 

learning how to model. The necessity of learning new 

content knowledge during the modelling process 

posed an additional challenge for the researcher in the 

creation of the tasks. Yet, it was an intentional 

approach, because this sort of encounter with new 

knowledge during an investigation – in which the new 

knowledge is useful and necessary – presumably 

enables mathematics appreciation and meaningful and 

longer-lasting learning. 

 

Based on the above criteria, research tasks reflected 

likely-to-be-experienced situations and were designed 

to develop reasoning skills and mathematical 

knowledge, by offering students thought-provoking, 

challenging, and high-level thinking tasks (as defined 

by Silver et al.. 2009). Four different tasks were 

elaborated for this research purpose; each research 

intervention was based on one of them. Tasks aimed 

to address four different content areas from the 

Mathematics 20-1 program of studies while respecting 

the teacher’s planning for the course. The first task was 

about quadratic functions in a profit context (Figure 2), 

the second task was about the cosine law in a flight 

simulator context, the third task was about rational 

equations in a medley relay context, and the fourth task 

was about arithmetic and geometric sequences in a 

linear and binary search context.  

 

The class teacher suggested changes to the tasks when 

appropriate and approved all of them before 

implementation. The first task was implemented 

during three consecutive 80-minute classes, while 

each of the other three tasks was implemented during 

two consecutive 80-minute classes. Although students 

were encouraged to work collaboratively in teams, at 

the end of the process they could find different and 

individual solutions for the same task. Aligned with 

this research methodology, after one or more tasks 

were applied and based on students’ prolonged 

struggle, whatever was deemed enabling or 

constraining in promoting students’ mathematical 

modelling was considered to modify or adapt the 

following task and the following intervention. 

Stillman (2001) asserts that task scaffolding is directly 

related to the number of decisions students are to face 

and deal with. The lower the task scaffolding the 

higher the number of decisions to be made. The higher 

the task scaffolding, the lower the number of decisions 

to be made. The main challenge in the elaboration and 

implementation of the tasks was the decision about 

how much data was just the “right amount” for 

learners to work through the task relatively 

autonomously from the teacher and researcher. 
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Figure 2  

Task 1 – Quadratic Functions 

 

 

When students were working on the tasks, in the same 

way as in task elaboration, the strategy was not to give 

unnecessary support for them to start with. However, 

mathematical modelling was not the kind of activity 

that the class and the teacher were used to engage in, 

so this was taken into consideration. In the first 

Price elasticity tells how much of an impact a change in price will have on the consumers' willingness 

to buy that item. If the price rises, the law of demand states that the quantity demanded of that item will 

decrease. Price elasticity of demand tells you how much the quantity demanded decreases. Elastic 

demand means that the consumers of that good or service are highly sensitive to changes in price. 

Usually, a good which is not a necessity or has numerous substitutes has elastic demand. Inelastic 

demand means that the consumers of that good are not highly sensitive to price changes. If the price of 

an inelastic good, say [bread], rises by 10 percent, maybe sales will only decrease by 1 percent. 

Consumers will still buy that good, typically because it is essential or has no substitutes. (Tuck, n.d.) 

In the graph below, D stands for price 

and Q stands for quantity demanded. 

 

(Elasticity of demand, n.d.) 

 

Suppose you are responsible for the accountancy of a bookstore. You were requested to do a price analysis for 

two products: a textbook and a reading book. In this analysis, you should consider cost, revenue and profit. 

The table below presents some data about variation in quantity sold when prices vary. Other than that, it might 

be helpful to know that there is a fixed cost of CAD$ 618 to produce either book. Based on your analysis, what 

is the best option to price each product in order to maximize the store profit? 

Textbook Reading Book 

Unit Price Quantity Sold Cost/Unit Unit Price Quantity Sold Cost/Unit 

CAD$ 26 102 

CAD$ 18 

CAD$ 24 112 

CAD$ 18 
CAD$ 30 100 CAD$ 30 100 

CAD$ 34 98 CAD$ 34 92 

CAD$ 40 95 CAD$ 38 84 

 

Total revenue is calculated as the quantity of a good 

sold multiplied by its price. It is a measure of how much 

money a company makes from selling its product, before 

any costs are considered. Obviously, the goal of a 

company is to maximize profits, and one way to do this is 

by increasing total revenue. The company can increase 

its total revenue by selling more items or by raising the 

price. (Tuck, n.d.) 



116 | C O R R Ê A  

 

researcher’s visit to the class (to explain the research 

and invite students to participate) an example of a 

modelling task was given to students so that they could 

understand what was expected from them. Besides, the 

researcher was in class during all interventions and 

helped the teacher with whatever was necessary during 

the modelling intervention implementation. Stender 

and Kaiser (2016) suggest that, when modelling, 

students should get adequate help, not too much and 

not too little. As a rule, after students were given 

enough time to struggle, investigate and elaborate on 

the task, they would get an appropriate piece of advice 

or information, just enough to scaffold their meaning-

making and allow them to move forward. If a group 

did not require scaffolding, they would not get it and 

would have the opportunity to face difficulties and 

challenges on their own. Vorhölter  et al.  (2014) 

highlight that scaffolding practice cannot be based on 

the teacher's immediate thoughts about students’ 

work. It needs to be based on the diagnosis of students' 

understanding instead. Kaiser and Stender (2013) 

propose this diagnosis be done by asking students 

what their state of work is. The intention of the 

scaffolding in this study was not to induce students to 

choose a path, neither to get in the way of their 

thinking processes by anticipating steps they were 

supposedly able to achieve. The aim was to allow 

students to fully experience the modelling processes, 

promote high-level mathematics reasoning, and foster 

confidence.  

 

Collecting Data 

As illustrated in Figure 1, four data collection methods 

were used. During each intervention, audio and video 

recordings of students’ activities, and researcher's 

field notes about students’ discussions were gathered. 

Then, at the end of each intervention, students' 

mathematics journals were collected. Lastly, after 

each intervention was completed, students were 

invited to participate in recall interviews to further 

discuss what they have experienced in class.  

 

Video and audio recordings allowed for recurrent 

examination. These recordings were used to create 

transcripts, which were of fundamental relevance for 

the analysis of students' mathematical proficiency. 

While student group discussions about the task were 

being audio and video recorded, the researcher 

observed students and took field notes based on 

students' work, questions and conjectures about tasks. 

These field notes were to complement perceptions and 

comments gathered through recordings. During 

activities, students were encouraged to report their 

discussion processes and investigation outcomes by 

writing notes in their individual journals. Students 

were asked and remembered to record variables, 

assumptions, strategies, solutions, thoughts, changes 

in reasoning, and doubts in their journals. These 

written materials helped to portray students’ 

development of mathematical proficiency. Journals 

were contrasted with audio and video recordings, 

providing adequate warrants for the conclusions made 

concerning students’ mathematical proficiency. These 

documents were also used in recall interviews as a way 

of reminding students of what they did during the 

tasks. 

 

Recall interviews were stimulated recall interviews 

(Anderson et al.,   2009), in which students were asked 

to recall situations that happened in class and discuss 

them. The researcher conducted the interviews. It was 

extremely important to provide students with a 

comfortable and respectful environment, not to create 

expectations about what students were to say, not to 
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induce students by researcher thoughts, and not to 

drive students to fulfill researcher expectations. A 

relevant aspect of stimulated recall interviews is that if 

students feel comfortable enough to speak freely, they 

can drive the interviews and clarify their thoughts. 

This strategy is likely to draw the researcher’s 

attention to relevant issues that might not have been 

noticed before and could enrich research findings. 

Nine out of the 12 invited students accepted the 

invitation to participate in recall interviews.  

 

The interview questions were meant to unpack 

students’ work and investigate students’ mathematical 

proficiency. Some general questions were elaborated 

for discussion, and some specific questions were 

posed based on students’ individual work during the 

modelling tasks. The combination of asked questions 

depended on the task, the student, and the course of the 

interview. Because stimulated recall interviews are 

based on post-reflections about what students meant or 

thought, they might not reflect students’ activities and 

opinions with exactness. In this sense, it is essential to 

consider other methods of data collection, such as the 

ones described before. Audio and video recordings, 

field notes and mathematics journals reflect students’ 

activities in the actual intervention setting; therefore, 

students' ideas and thoughts might be more accurate 

when gathered by these methods. In analyzing and 

overlapping the data collected from the four different 

methods, findings supplement each other, bring up 

nuances, give insights about students’ thinking, and, as 

a result, provide a richer picture of the situation. 

 

Analyzing the Data 

Analyzing students' mathematical proficiency 

involves comprehending in what ways students 

understand and process mathematics. Three 

theoretical frameworks were considered for this study 

analysis: Pirie and Kieren’s (1994) model, Tall’s 

(2013) model, and Kilpatrick et al.'s (2001) model. 

Due to the challenges in pointing out students' 

proficiency, Kilpatrick et al.'s (2001) mathematical 

proficiency model was chosen to operationalize this 

process through some indicators. The use of this model 

offers some advantages to this classroom-based 

research when compared to the other analyzed models: 

it includes features of mathematical understanding that 

are present in the literature; it relates students’ 

mathematical performance to teachers’ daily practice; 

it thoroughly describes students’ mathematical 

performance in terms of concepts, procedures, 

strategies, and reasoning; and it considers student-

related aspects. 

 

Kilpatrick et al. (2001) use the term mathematical 

proficiency to refer to aspects deemed as necessary to 

successfully learn mathematics. Their notion of 

mathematical proficiency states that students need to 

accomplish five different strands to achieve 

mathematical proficiency, namely: conceptual 

understanding, procedural fluency, strategic 

competence, adaptive reasoning and productive 

disposition. The authors understand that these five 

strands are interconnected as a complex whole and all 

of them influence students’ mathematical proficiency. 

Conceptual understanding enables students to retrieve 

and apply mathematical content more easily because 

they can make sense of mathematics as a whole and 

not as isolated parts. Procedural fluency involves 

knowing and understanding which procedure to use, 

when, how and why to use it. Strategic competence 

requires students to work on problem formulation, 

problem representation, and problem-solving. 

Adaptive reasoning is the ability to logically relate 
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mathematical concepts and situations, to adapt 

thoughts, conjectures and approaches. Finally, 

productive disposition is defined as students’ positive 

perception about the worthiness and usefulness of 

mathematics, and the belief in their own ability to 

make sense of, learn and do mathematics. Based on 

these strands, a list of indicators was created to identify 

each strand in students’ mathematical work (Table 1). 

Data collected was coded according to these 

indicators. 

 

Table 1  

Data Analysis.Indicators for each of the Strands of Mathematical Proficiency 

Conceptual 

Understanding 

Connect mathematical content. 

Retrieve mathematical content. 

Understand mathematical content. 

Strategic 

Competence 

Build a strategy to understand the problem. 

Build a strategy to represent the problem. 

Build a strategy to solve the problem. 

Procedural 

Fluency 

Choose a right procedure. 

Choose a right moment to apply the procedure. 

Perform the procedure correctly. 

Understand the procedure. 

Adaptive 

Reasoning 

Logically relate contents. 

Logically relate situations. 

Logically relate content and situation. 

Transfer content between situations. 

Productive 

Disposition 

Perceive mathematics as worthwhile. 

Believe in his/her ability to learn mathematics. 

Believe in his/her ability to do mathematics. 

 

To organize and investigate the collected and coded 

data, interpretive diagrams illustrating individual 

student’s thinking path were elaborated by the 

researcher. Although students were working in groups, 

diagrams were based on students’ individual work. 

These diagrams portray fragments collected from 

students’ written materials, audio and video 

transcripts, and interview transcripts. Researcher field 

notes are not used in the diagrams’ creation. An 

example of an interpretive diagram is shown in Figure 

3. Fragments from student’s work are shown inside 

rectangles within the diagram and are mapped 

according to the student’s journey through the task 

from introduction to completion. Italics are used to 

represent the student's verbatim quotations. Kilpatrick 

et al.'s (2001) proficiency strands are illustrated on the 

diagram within bubbles. Fragments were categorized 

based on the indicators presented in Table 1. To 

illustrate the interpretation of a fragment as a specific 

strand or strands of mathematical proficiency, black 
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arrows connect them. The chronological order that 

fragments were collected is indicated by a grey ellipse-

shaped arrow. The beginning of the process is 

represented by a dash at one extreme of the arrow, and 

the end of the process is represented by a dot at the 

other extreme of the arrow. If the grey arrow does not 

overlap fragments, it means these fragments are from 

recall interviews. To analyze the data across students 

and across the strands of mathematical proficiency, 

students’ work needed to be made comparable. 

Therefore, a decision was made to divide their work 

into phases. Phases 1, 2 and 3 refer to the beginning, 

the middle and the end of a student’s work 

respectively. Depending on the student's work, these 

phases slightly varied. Although these phases speak to 

three different moments in time during the modelling 

investigation process, they do not intend to 

characterize the modelling process as a three-stage 

process. Fragments of Phases 1 and 3 are numbered in 

dark gray. Fragments of Phase 2 are numbered in light 

gray. Fragments of interviews are numbered in white. 

 

Four diagrams (representing the work of four different 

students) were created for each of the four tasks. In 

total, 16 interpretive diagrams were created and 

analyzed. The goal was to have diagrams representing 

all 12 students, all four tasks, and all 12 discussion 

groups (three groups for each of the four tasks). All 12 

students were considered in the data analysis 

regardless of their interest, background or readiness in 

mathematics. Unfortunately, diagrams did not include 

the data from three out of the 12 students, either 

because students were not verbally contributing during 

the task period, either because they did not have 

enough records in their journals or both. All the other 

nine students were contemplated once or twice in the 

diagrams created. All four tasks and students’ work 

from 11 of the 12 discussion groups were represented 

in the interpretive diagrams. Students’ work was 

chosen based on the quantity of students’ written, and 

verbal contributions, and also based on the quality of 

audio and video recordings. Some recordings 

presented too much noise in the background and, 

although software resources were used to try lessening 

the noise effect, that did not turn out successfully. The 

use of individual microphones would have helped in 

this matter.  

 

Although the interpretive diagrams were created based 

solely on students’ written and verbal 

communications, and the mathematical proficiency 

indicators used to code the data were meant to be clear 

and well-defined, the diagrams reveal the researcher’s 

interpretation of students’ mathematical work. This 

interpretation accounted for overlaps between the 

different indicators, given that one single fragment 

from students’ work could inherently reveal more than 

one strand of mathematical proficiency. Besides, a 

detailed narrative explaining the interpretation of each 

diagram was written, and the field notes were used in 

some of the narratives to account for some of the 

researcher’s observations and perspectives. While 

readers may agree with the researcher’s interpretations 

of students’ work, it may also be the case that this is 

not true, which would speak to a limitation of the 

research.  
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Figure 3  

An Example of an Interpretive Diagram
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Research Outcomes  

Mathematical Proficiency Expressions 

To answer this study’s first research question – how 

mathematical proficiency is observed and expressed 

when students are engaged in mathematical modelling 

– it was necessary to look at students’ actions and 

interactions in terms of the five strands of 

mathematical proficiency. Fragments from 

interpretive diagrams were analyzed to identify 

specific ways of expressing individual strands of 

mathematical proficiency; that is what actions in 

students’ work characterized each strand. Students’ 

expressions of conceptual understanding were mainly 

afforded by their discussions and explanations in their 

groups, and on a smaller scale, these expressions were 

afforded by the teacher or by self-talk. Students 

expressed conceptual understanding when: retrieving 

a concept; explaining a concept they were willing to 

use; explaining how or why they were willing to use a 

determined concept; describing a situation related to a 

specific concept; explaining what they were doing; 

explaining how or why they got to a determined stage; 

describing a situation under analysis and making a 

conceptual conclusion; describing a procedural step 

that was justified based on the concept behind it; 

representing a situation by using mathematical terms 

and concepts; representing a situation through a 

mathematical illustration and mathematical concepts.  

 

As for strategic competence, most evidence was taken 

from the students’ verbal discourse, but there was also 

written evidence. Some ways of expressing students' 

strategic competence were: describing a strategy; 

explaining the usefulness of a strategy; describing the 

approach to solve/model the task; explaining what 

needs to be done; explaining why following a 

determined plan; making conjectures about a possible 

plan; making questions to better organize thoughts and 

understand a task; representing a strategy by using 

mathematical terms; representing a strategy through a 

table; representing a strategy through a mathematical 

illustration. Procedural fluency is the easiest strand of 

mathematical proficiency to be identified in students' 

work. This is because – different from other strands – 

students usually make notes of the procedures they 

use, given that they typically need to write down their 

mathematical procedures to work on them. If some 

students are not prompted to write down their 

thoughts, conjectures and reasoning, they will 

probably only write down procedures. Some ways of 

expressing procedural fluency were: writing and 

working on a mathematical equation (or any other 

procedure) that represented a problem; organizing data 

in a table or in another format and finding patterns or 

relations; writing a mathematical algorithm that 

represented a problem; describing a procedure; 

explaining a procedure. 

 

In terms of adaptive reasoning, it is worth noticing that 

part of the evidence was gathered during students' 

reflections in stimulated recall interviews. This fact 

confirms that students do not always reveal their 

thoughts while engaged in classroom mathematical 

tasks. Sometimes students need to be asked or 

prompted to reflect on what they are doing so that their 

reasoning is disclosed and elucidated. Some ways of 

expressing adaptive reasoning were when students: 

realized a change in a task situation and conjectured 

about new possibilities; explained why or how a 

determined content was used to approach the given 

situation; explained why or how a content interfered in 

the way a situation unfolded; compared different 

contents in relation to one same feature; conjectured 

about how different situations related to each other; 
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explained how or why transferring one content from 

one situation to another; inquired about the use of 

certain content in a certain situation. Finally, 

productive disposition was expressed when students: 

valued figuring out the task on their own, instead of 

being told what to do; identified what needed to be 

done and worked towards it; took their own decisions; 

described what to be done; showed belief in their 

ability to infer; showed belief in their capacity to 

understand; approached the hardest first; trusted that 

at some point they would get to an answer; shared and 

used their ideas within the group; showed enjoyment 

when getting to an end; inferred what they would get 

when following a different path; valued the fact that 

the task did not limit them; acknowledged they were 

more confident; pointed up to the relevance of 

mathematical modelling tasks done in class; 

underlined the usefulness of associating tasks with 

contextualized situations.  

 

These five lists of how strands of mathematical 

proficiency can be expressed in students’ work are not 

intended to be exhaustive lists. Their main purpose is 

to show the richness of actions that can reveal 

mathematical proficiency along with students' work, 

indicating options that can be encouraged or even 

required in students’ mathematical written work, and 

pointing out new possibilities when assessing 

students’ mathematical work.  

 

Mathematical Proficiency Behaviours 

From the analysis of students’ interpretive diagrams, 

an extra research question emerged: What 

mathematical proficiency behaviours can be observed 

in students’ modelling processes? All 16 interpretive 

diagrams were analyzed in four different ways: 

individually; across students; across tasks; and across 

strands of mathematical proficiency.  

 

The first analysis approach, based on individual 

student’s work on single tasks, brought up four 

remarks. The first one highlights that mathematical 

modelling can promote the development of students’ 

mathematical proficiency, which is a sought-after goal 

in students’ mathematics education. The 16 diagrams 

presented at least one fragment of each of the 

proficiency strands; which means that students were 

somehow working on mathematical skills related to 

concepts, strategies, procedures, reasoning, and 

attitude towards mathematics while engaged in the 

modelling tasks. This outcome indicates modelling as 

a prospective approach to mathematics teaching and 

learning. The second remark is that, when working on 

mathematical modelling, students work on the strands 

of mathematical proficiency even when they do not 

complete the task requirements. This outcome can be 

confirmed through students’ diagrams. Some of the 

students did not finish their tasks, mainly because they 

needed some extra time; but students’ diagrams still 

portray all five strands of mathematical proficiency. 

This outcome decreases the pressure on students to get 

to a final answer, as if this was a condition for them to 

learn mathematics. It highligths the development of 

mathematical proficiency throughout the processes of 

learning. The third remark refers to the difficulty in 

gathering fragments related to adaptive reasoning and 

productive disposition. Students did not commonly or 

openly express these strands, and when they did it was 

usually by verbal communication. Adaptive reasoning 

was expressed when students explained their thoughts 

or options to their peers, or when they were thinking 

out loud as a way of understanding or clarifying their 

ideas. It was not usual for students to write down their 
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reasoning. In general, they wrote down the procedures 

derived from their reasoning processes. Therefore, 

many times their reasoning was implicit in their 

procedures. This implicit reasoning might be clear by 

analyzing students’ procedures; however, changes in 

reasoning might be almost unobservable, in particular, 

when students erase or do not register their attempts to 

solve the task. As for productive disposition, this 

strand was mainly observed as student excitement and 

confidence about what they were doing, or when they 

verbalized their contentment in learning some useful 

knowledge or in exploring some likely-to-happen 

situations. Some students wrote down positive 

comments about their accomplishments, but this was 

not standard. Opportunities to identify productive 

disposition were scarce. The last remark observed in 

students’ individual work refers to the use of 

procedural fluency as a way of analyzing the task, 

instead of just a way of solving the task. Procedural 

fluency is typically expected when students are 

implementing procedures to solve the task. This 

individual analysis drew attention to the fact that 

students could use procedural examples to illustrate or 

represent what was being described in the task. By 

doing that, students were able to express what they 

were supposed to visualize and analyze, which made 

their comprehension process more tangible and easier.  

 

The second analysis approach was by crossing data 

over students, that is, by looking at one same task 

when done by different students. All four diagrams 

referring to the same task – from four different 

students – were investigated and mapped in search of 

common aspects or behaviours. The goal was to figure 

out if the task was accountable for prompting specific 

thoughts or raising specific strategies that would result 

in a mathematical proficiency pattern. The same 

procedure was repeated for tasks one, two, three and 

four. However, no patterns or tendencies triggered by 

the tasks were found. The third analysis approach was 

done by crossing data over tasks, that is, by looking at 

one same student when doing different tasks. In this 

case, two different tasks done by the same student 

were analyzed and mapped looking for similar ways of 

conducting the tasks. The idea was to identify if the 

student’s mindset could possibly influence the 

resolution of different tasks. This behaviour could be 

observed if similar thoughts, approaches or strategies 

were consistently used in different tasks, due to the 

student’s particular ways of doing mathematics. If that 

was the case, peculiar mathematical proficiency 

patterns could be noticed. Nevertheless, that was not 

the case, which means no patterns or tendencies 

seemed to be generated by students’ individualities. 

 

The final analysis approach was by crossing data over 

the strands of mathematical proficiency, that is, by 

looking at the strands along time for all students and 

all tasks. A distribution of the strands of mathematical 

proficiency, throughout task phases, is portrayed in the 

graph shown in Figure 4. Task phases refer to Phases 

1, 2 and 3 identified in each diagram. Each dot in the 

graph is obtained by coordinates, in which x 

corresponds to a number composed by [Phase 

Number. Student Number] and y corresponds to a 

number composed by [Strand Number. Task Number]. 

Productive disposition is considered as strand 0, 

adaptive reasoning as strand 1, procedural fluency as 

strand 2, strategic competence as strand 3, and 

conceptual understanding as strand 4. Each student 

and each task were assigned a number. If a dot has 

coordinates (1.7, 2.4), it refers to student number 7, 

doing task number 4, during phase number 1, and 

working on strand number 2. In the graph, strands are 
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weighted, which means that if the same strand occurs 

more than once within the same phase, same task and 

same student, the respective dot will be increasingly 

bigger according to the number of occurrences.  

 

As Figure 4 shows, the different strands are present in 

all stages of students’ work. However, there is a larger 

concentration of conceptual understanding and 

adaptive reasoning at the initial phases, attesting to 

students’ greater need to retrieve previous concepts, 

reason and ponder different options, understand the 

task and establish a working plan. Strategic 

competence was more intense in the initial and middle 

phases, indicating students’ attempts to come up with 

strategies to solve the task. Procedural fluency was 

mainly concentrated in the middle and final phases, 

suggesting students were doing the necessary 

procedural work to carry out the planned strategies. 

Finally, productive disposition was expressed more 

often in the middle and final phases, after students 

have done some work and have experienced reassuring 

results. Students' mathematical proficiency may 

unfold along time following this tendency. Yet, this 

study does not suggest that this is a fixed pattern for 

students' proficiency growth while modelling. 

 

Figure 4  

Graph of Weighted Strands Over Investigation Phases 
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Mathematical Proficiency in the Context of 

Mathematical Modelling  

This study’s final research question speaks to the 

affordances on students’ mathematical proficiency 

when modelling is explored in high-school classes. To 

answer this question, it is necessary to describe how 

the strands of mathematical proficiency function in the 

context of mathematical modelling, that is, how 

mathematical modelling supports the development of 

these strands by demanding students to engage in 

activities that are not simply based on the use of 

procedures. Blum and Borromeo Ferri (2009) suggest 

seven different stages in a modelling cycle, namely: 

understanding the task; simplifying/structuring; 

mathematizing; working mathematically; interpreting; 

validating; and presenting. Thinking in terms of these 

different stages and supported by Palharini and 

Almeida’s (2015) thoughts about investigating 

mathematical thinking processes through modelling, 

students’ activities were explored to bridge the 

modelling processes and the strands of mathematical 

proficiency. A set of 13 modelling processes that 

reflect the activities students engaged in when working 

on the proposed mathematical tasks was determined. 

Based on the list of indicators used for data analysis 

(Table 1), these processes and respective activities 

were then correlated with the promoted strands of 

mathematical proficiency. The result of this 

correspondence is illustrated in Table 2 

 

Table 2  

Mathematical Modelling. Processes and Promoted Strands of Mathematical Proficiency 

Mathematical Modelling 

Processes 
Students’ Activities 

Promoted Strands of 

Mathematical Proficiency 

Engagement Investigating likely-to-happen situations. Productive Disposition 

Motivation Realizing mathematics usefulness. Productive Disposition 

Positive Attitude 
Realizing the ability to do and learn 

mathematics, and to solve problems. 
Productive Disposition 

Investigation Exploring a task and its goals. All five strands. 

Conceptual Analysis Relating a task to mathematical concepts. Conceptual Understanding 

Content Analysis Relating a task to mathematical contents. Conceptual Understanding 

Strategy Building Figuring out strategies to solve a task. Strategic Competence 

Decision Making Choosing appropriate options to solve a task. Strategic Competence 

Choice of Procedures Determining proper procedures to solve a task. Procedural Fluency 

Use of Procedures Implementing mathematical procedures. Procedural Fluency 

Knowledge Production 
Producing or researching the necessary 

knowledge to solve a task. 
All five strands. 

Mathematical Reasoning Finding out logical relations. Adaptive Reasoning 

Explanation Explaining or justifying decisions or solutions. Adaptive Reasoning 



126 | C O R R Ê A  

 

Although listed in a certain order, these processes do 

not adhere to a determined order. Modelling is not 

linear and, as a result, these processes can coexist in 

diverse ways. As suggested by Lamon (2003), when 

presented with a modelling problem that addressed a 

likely-to-happen situation and portrayed the 

usefulness of mathematics, students’ behaviours 

reflected engagement and motivation. Also, when 

students perceived that they were capable of doing and 

learning mathematics they showed a positive attitude 

towards mathematics. As per Kilpatrick et al.’s (2001) 

work, both these situations promote the development 

of productive disposition. During the modelling tasks, 

students would connect to prior knowledge in search 

of content or concepts that would relate to the task they 

were investigating. These processes were called 

conceptual and content analysis, speaking to the 

development of conceptual understanding (Kilpatrick 

et al.). Students also needed to analyze diverse 

situations and figure out a plan to approach them. 

Students had to search for strategies and determine 

which strategy would be more appropriate; focusing 

on strategy building and decision making and, as a 

result, promoting strategic competence (Kilpatrick et 

al.). Besides, students were expected to investigate 

situations that were not directly related to specific 

learned content, they needed to consider different 

procedures, identify an appropriate one, and 

implement it, addressing the development of 

procedural fluency (Kilpatrick et al.). Finally, when 

students were engaged in activities that required them 

to seek mathematical relations or to explain and justify 

their work, they were working on the processes of 

mathematical reasoning and explanation, which 

promotes adaptive reasoning (Kilpatrick et al.). Due to 

the extent of the so-called investigation and 

knowledge production processes, both were 

considered to fully promote the strands of 

mathematical proficiency. 

Final Thoughts 

The benefits of bringing modelling into mathematics 

classes are mostly acknowledged, and modelling is 

becoming more common and more appealing. 

Research around this topic is increasing, and new 

understandings and possibilities are emerging to 

enrich mathematics teaching and learning processes. 

Modelling experiences can be of benefit for teachers 

and students (Biembengut, 2009; Blum & Borromeo 

Ferri, 2009; Doerr, 2006; English & Doerr, 2004; 

Viecili, 2006,), and teachers should consider saving 

class time to work on them. As the Mathematical 

Modelling Handbook (Teachers College Columbia 

University, 2012) highlights, "modelling cannot be set 

aside or employed only when spare time arises" (p. vi). 

However, although there is adequate research about 

this topic – gathering several successful examples – 

there is not enough knowledge to lead to a consensus 

about how modelling should be implemented in class 

(Vorhölter et al., 2014). Indeed, the practical 

incorporation of mathematical modelling in classes 

still poses a big challenge. As Kaiser and Stender 

(2013) affirm:  

 

It is especially an open question, how 

complex authentic modelling problems put 

forward by the realistic or applied perspective 

on modelling can be integrated into 

mathematics education, what kind of learning 

environment is necessary, whether a change 

in the role of the teacher to a coach or mentor 

of the students is needed (p. 279). 

 

This study intends to yield some insight into what kind 

of environment is necessary when doing modelling 
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activities in high-school classes, and insight into the 

integration of mathematical modelling tasks that aim 

to promote mathematical proficiency. The first 

concern when investigating this scenario was related 

to the design of the classroom in which students are 

immersed. It is important to recognize a mathematics 

class as a complex system, and respect and support the 

complex features inherent to it (Davis & Simmt, 2003; 

Ricks, 2009). Maintaining this supportive 

environment was essential to obtain this research 

reported outcomes. The next research concern was 

observing the five strands of mathematical proficiency 

(Kilpatrick et al., 2001) in students’ mathematical 

work while modelling in this complex classroom 

setting. Palharini and Almeida (2015) argue that 

modelling tasks allow mathematical thinking 

processes to be revealed and explored, which in turn 

facilitates the creation of proper learning approaches 

that will foster these processes. By unfolding students' 

mathematical proficiency, teachers can better access 

and grasp students' thoughts to enhance their teaching 

and learning strategies. This study differs from 

previous ones primarily in the two different aspects 

described above, which are: 1) the classroom design, 

which is set respecting complex system features; and 

2) the research analysis, which focuses on high-school 

students' mathematical proficiency.  

 

The integration of mathematical modelling tasks in 

class can pose some challenges; in particular, when 

students are expected to produce knowledge. Diverse 

reasons can be mentioned by teachers to avoid it. 

Three of them might be of more influence when 

teachers give up, they are: the difficulty in creating 

mathematical modelling tasks; the difficulty in fitting 

modelling tasks within curriculum outcomes; and the 

long time required implementing modelling tasks. As 

mentioned in the Mathematical Modelling Handbook 

(Teachers College Columbia University, 2012), "[t]he 

integrated nature of mathematical modelling, and in 

turn the number of curricular standards covered when 

working through a modelling activity, make modelling 

activities a very efficient use of class time" (p. vi). 

That is to say that the time required for the 

implementation and the connection with the 

curriculum are not exactly constraints, once modelling 

successfully integrates content in a timely manner. 

This same handbook presents 26 different modelling 

modules that can be used in mathematics classes, not 

to mention other publications indicated earlier in this 

paper with the same goal. The difficulty in creating 

modelling tasks and/or the lack of instructional 

materials are not as problematic as they were when 

tasks were not readily available. Moreover, the 

benefits modelling has to offer to mathematics 

teaching and learning processes (e.g. Blum & 

Borromeo Ferri, 2009; Biembengut, 2009; Viecili, 

2006) outweigh the abovementioned challenges. 

 

This research addresses mathematical proficiency 

expressions and behaviours when students are 

engaged in mathematical modelling tasks in a high-

school class. It also speaks to the affordances on 

students' mathematical proficiency while modelling. 

Previous research did not analyze high-school 

students’ engagement in mathematical modelling tasks 

in terms of their mathematical proficiency. This 

research suggests that mathematical modelling has the 

potential of promoting and fostering students’ 

mathematical proficiency, even when tasks assigned 

are not fully completed. Considering that mathematics 

teachers and educators can benefit from teaching 

approaches that favour students’ solid learning of 

mathematics, it is of crucial importance to draw 
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attention to classroom-based experiences that work 

towards teaching for mathematical proficiency. 
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